Skip to content Skip to sidebar Skip to footer

Substitution Integrals

About Substitution Integral

Sometimes solving integrals of the form $\int {f\left( x \right)} dx$ requires special techniques. One of the special techniques is to use the integral substitution formula. There are two kinds of substitution integral formulas that are commonly used, namely:

  1. Modifiable integration in the form $\int {f\left( u \right)} du$
  2. Integration containing the forms $\sqrt {{a^2} - {x^2}} $, $\sqrt {{a^2} + {x^2}} $, and $\sqrt { {x^2} - {a^2}} $

A mutable integration of the form $\int {f\left( u \right)} du$

Suppose using the substitution $u = g\left( x \right)$, where $g$ is a function that has a derivative, so $\int {f\left( {g\left( x \right )} \right)} g'\left( x \right)dx$ can be changed to $\int {f\left( u \right)} du$. If ${f\left( u \right)}$ is anti-differential from ${f\left( x \right)}$ then:

$\boxed{\int {f\left( {g\left( x \right)} \right)} g'\left( x \right)dx = \int {f\left( u \right)} du = F\left( u \right) + C = F\left( {g\left( x \right)} \right) + C}$

The integration calculation technique using the substitution integral formula requires two steps as follows:

  1. Choose a function $u = g\left( x \right)$ so that $\int {f\left( {g\left( x \right)} \right)} g'\left( x \right)dx $ can be changed to $\int {f\left( u \right)} du$.
  2. Find the general integral function ${f\left( u \right)}$ which is $F'\left( {du} \right) = f\left( u \right)$.

To determine the general integral function $f\left( u \right)$ which is $F'\left( {du} \right) = f\left( u \right)$, can be obtained by developing the formulas Indeterminate integrals of algebraic and trigonometric functions. The development formulas can be summarized as follows:

  1. Integrating Algebraic Functions
  2. $\boxed{\int {{u^n}} du = \frac{1}{{n + 1}}{u^{n + 1}} + C},n \in Rasional,n \ne 1$
  3. Integrating Trigonometric Functions
    • $\int {\sin udu = - \cos u + C} $
    • $\int {\cos udu = \sin u + C} $
    • $\int {{{\sec }^2}udu = \tan u + C} $
    • $\int {\cos e{c^2}udu = - \cot u + C} $
    • $\int {\tan u.\sec udu = \sec u + C} $
    • $\int {\cot u.\cos ecudu = - \cos ecu + C} $

Examples

Find the following indefinite integrals

  1. $\int {{{\left( {4x + 5} \right)}^6}} dx$
  2. ${\int {10x\left( {8{x^2} - 1} \right)} ^4}dx$
  3. $\int {\sqrt {\sin x} } \cos xdx$
  4. $\int {\frac{{\sin x}}{{{{\cos }^2}x}}} dx$

Answers

  1. For example $u = 4x + 5$ then $du = 4dx$ or $dx = \frac{1}{4}du$
  2. $\begin{array}{l} \int {{{\left( {4x + 5} \right)}^6}} dx = \int {{u^6}} .\frac{1}{4}du\\ = \frac{1}{4}\int {{u^6}} du\\ = \frac{1}{4}\left( {\frac{1}{7}{u^7}} \right) + C\\ = \frac{1}{{28}}{u^7} + C\\ = \frac{1}{{28}}{\left( {4x + 5} \right)^7} + C \end{array}$

    So, $\int {{{\left( {4x + 5} \right)}^6}} dx = \frac{1}{{28}}{\left( {4x + 5} \right )^7} + C$.

  3. For example $u = 8{x^2} - 1$ then $du = 16xdx$ or $dx = \frac{{du}}{{16x}}$
  4. $\begin{array}{l} {\int {10x\left( {8{x^2} - 1} \right)} ^4}dx = {\int {10x\left( u \right)} ^4}.\frac{{du} }{{16x}}\\ = \int {\frac{{10}}{{16}}} {u^4}du = \int {\frac{5}{8}} {u^4}du\\ = \frac{5}{8}\int {{u^4}du} \\ = \frac{5}{8}\left( {\frac{1}{5}{u^5}} \right) + C\\ = \frac{1}{8}{u^5} + C\\ = \frac{1}{8}{\left( {8{x^2} - 1} \right)^5} + C \end{array}$

    So, ${\int {10x\left( {8{x^2} - 1} \right)} ^4}dx = \frac{1}{8}{\left( {8{x^ 2} - 1} \right)^5} + C$.

  5. For example $u = \sin x$ then $du = \cos xdx$ or $dx = \frac{{du}}{{\cos x}}$
  6. $\begin{array}{l} \int {\sqrt {\sin x} } \cos xdx = {\int {\left( {\sin x} \right)} ^{\frac{1}{2}}}\cos xdx\\ = \int {{u^{\frac{1}{2}}}} \cos x.\frac{{du}}{{\cos x}}\\ = \int {{u^{\frac{1}{2}}}} du\\ = \frac{1}{{\frac{1}{2} + 1}}{u^{\frac{1}{2} + 1}} + C\\ = \frac{2}{3}{u^{\frac{3}{2}}} + C\\ = \frac{2}{3}u\sqrt u + C\\ = \frac{2}{3}\sin x\sqrt {\sin x} + C \end{array}$

    So, $\int {\sqrt {\sin x} } \cos xdx = \frac{2}{3}\sin x\sqrt {\sin x} + C$.

  7. For example $u = \cos x$ then $du = - \sin xdx$ or $dx = - \frac{{du}}{{\sin x}}$
  8. $\begin{array}{l} \int {\frac{{\sin x}}{{{{\cos }^2}x}}} dx = \int {\sin x.{{\cos }^{ - 2}}xdx} \\ = \int {\sin x.{u^{ - 2}}} . - \frac{{du}}{{\sin x}}\\ = - \int {{u^{ - 2}}du} \\ = - \left( {\frac{1}{{ - 2 + 1}}{u^{ - 2 + 1}}} \right) + C\\ = - \left( { - {u^{ - 1}}} \right) + C\\ = {u^{ - 1}} + C\\ = \frac{1}{u} + C\\ = \frac{1}{{\cos x}} + C \end{array}$

    So $\int {\frac{{\sin x}}{{{{\cos }^2}x}}} dx = \frac{1}{{\cos x}} + C$.

Integration containing the forms $\sqrt {{a^2} - {x^2}} $, $\sqrt {{a^2} + {x^2}} $, and $\sqrt { {x^2} - {a^2}} $

Integration containing the forms $\sqrt {{a^2} - {x^2}} $, $\sqrt {{a^2} + {x^2}} $, and $\sqrt { {x^2} - {a^2}} $ can be solved using integral substitution as shown in the following table:

Integral function Substitution Substitution Result
$\sqrt {{a^2} - {x^2}} $ $x = a\sin \theta $ $a\sqrt {1 - {{\sin }^2}\theta } = a\cos \theta $
$\sqrt {{a^2} + {x^2}} $ $x = a\tan \theta $ $a\sqrt {1 + {{\tan }^2}\theta } = a\sec \theta $
$\sqrt {{x^2} - {a^2}} $ $x = a\sec \theta $ $a\sqrt {{{\sec }^2}\theta - 1} = a\tan \theta $

Integrating using trigonometric substitution initially produces a function in the angle variable $\theta $. To express the result of the integration into the original variable (variable $x$) the inverse relationship of the trinometric function or arcus function is used.

Examples

Find the following indefinite integrals

  1. $\int {\sqrt {64 - {x^2}} } dx$
  2. $\int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} $

Answers

  1. For example $x = 8\sin \theta $ then $dx = 8\cos \theta d\theta $
  2. $\begin{array}{l} \int {\sqrt {64 - {x^2}} } dx = \int {\sqrt {{8^2} - {x^2}} } dx\\ = \int {\sqrt {{8^2} - {8^2}{{\sin }^2}\theta } } .8\cos \theta d\theta \\ = \int {8\sqrt {1 - {{\sin }^2}\theta } } .8\cos \theta d\theta \\ = \int {8\sqrt {{{\cos }^2}\theta } } .8\cos \theta d\theta \\ = \int {8\cos \theta } .8\cos \theta d\theta \\ = 64\int {{{\cos }^2}\theta d\theta } \\ = 64\int {\left( {\frac{1}{2} + \frac{1}{2}\cos 2\theta } \right)} d\theta \\ = 64\left( {\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta } \right) + C\\ = 32\theta + 32\sin \theta \cos \theta + C \end{array}$

    $x = 8\sin \theta $ then $\sin \theta = \frac{x}{8}$, we get $\theta = \arcsin \left( {\frac{x}{8}} \right)$.

    $\sin \theta = \frac{x}{8}$ then $\cos \theta = \frac{{\sqrt {{8^2} - {x^2}} }}{8}$

    $\begin{array}{l} \int {\sqrt {64 - {x^2}} } dx = 32\theta + 32\sin \theta \cos \theta + C\\ = 32\arcsin \left( {\frac{x}{8}} \right) + 32.\frac{x}{8}.\frac{{\sqrt {{8^2} - {x^2} } }}{8} + C\\ = 32\arcsin \left( {\frac{x}{8}} \right) + \frac{x}{2}\sqrt {{8^2} - {x^2}} + C \end{array}$

    So $\int {\sqrt {64 - {x^2}} } dx = 32\arcsin \left( {\frac{x}{8}} \right) + \frac{x}{2 }\sqrt {{8^2} - {x^2}} + C$

  3. For example $x = 2\sin \theta $ then $dx = 2\cos \theta d\theta $
  4. $\begin{array}{l} \int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} = \int {\frac{{dx}}{{\sqrt {{2^2} - {x ^2}} }}} \\ = \int {\frac{{2\cos \theta d\theta }}{{\sqrt {{2^2} - {2^2}{{\sin }^2}\theta } }}} \\ = \int {\frac{{2\cos \theta d\theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \\ = \int {\frac{{2\cos \theta d\theta }}{{2\cos \theta }}} \\ = \int {d\theta } \\ = \theta + C \end{array}$

    $x = 2\sin \theta $ then $\sin \theta = \frac{x}{2}$, we get $\theta = \arcsin \left( {\frac{x}{2}} \right)$

    $\begin{array}{l} \int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} = \theta + C\\ = \arcsin \left( {\frac{x}{2}} \right) + C \end{array}$

    So $\int {\frac{{dx}}{{\sqrt {4 - {x^2}} }}} = \arcsin \left( {\frac{x}{2}} \right ) + C$

Previous
Prev Post
Next
Next Post
nurhamim86
nurhamim86 A Mathematics Teacher who also likes the IT world.

1 comment for "Substitution Integrals"

  1. Casino de Monte-Carlo | Online gambling | bbsjeon
    Play 바카라양방배팅 at bbsjeon Casino with us today for the chance to win real money! 암호 화폐 종류 BBSJEON Casino offers you all the online entertainment, 승인전화없는 가입머니 plus 바카라에볼루션 the 크레이지 슬롯 latest promotions,

    ReplyDelete