Limit Theorem and Euler's Numbers
Limit Theorem
The properties of the limit of a function can be summarized in the Limit Theorem as follows.
- If $f\left( x \right) = k$ then $\mathop {\lim }\limits_{x \to a} f\left( x \right) = k$, for every $k$ constant and $a$ real numbers.
- If $f\left( x \right) = x$ then $\mathop {\lim }\limits_{x \to a} f\left( x \right) = a$, for every $a$ number real.
- $\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \mathop {\lim }\limits_{x \to a} f\left( x \right) \pm \mathop {\lim }\limits_{x \to a} g\left( x \right)$
- If $k$ is a constant then $\mathop {\lim }\limits_{x \to a} kf\left( x \right) = k\mathop {\lim }\limits_{x \to a} f \left( x \right)$
- $\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right).g\left( x \right)} \right\} = \mathop {\lim }\limits_{x \to a} f\left( x \right).\mathop {\lim }\limits_{x \to a} g\left( x \right)$
- $\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\ mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}$ with $\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0$.
- $\mathop {\lim }\limits_{x \to a} {\left[ {f\left( x \right)} \right]^2} = {\left[ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right]^2}$
- $\mathop {\lim }\limits_{x \to a} \sqrt[n]{{f\left( x \right)}} = \sqrt[n]{{\mathop {\lim }\ limits_{x \to a} f\left( x \right)}}$ with $\mathop {\lim }\limits_{x \to a} f\left( x \right) \ge 0$ for $n$ even.
Example
Calculate the limit value of the following function.
- $\mathop {\lim }\limits_{x \to 1} \left( {2{x^2} - 3x + 5} \right)$
- $\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} $
Answer
So, $\mathop {\lim }\limits_{x \to 1} \left( {2{x^2} - 3x + 5} \right) = 5$.
$\begin{array}{l} \mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} &= \frac{{\mathop {\lim }\limits_{x \to 0} \sqrt {{x^2} + 4} }}{{\mathop {\lim \sqrt {x + 4} }\limits_{x \to 0} }}\\ &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( {{x^2} + 4} \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right)} }}\\ &= \frac{{\sqrt {\mathop {\lim }\limits_{x \to 0} \mathop {\left( {{x^2}} \right) + \lim }\limits_{x \to 0} \left( 4 \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( x \right)\mathop {\lim }\limits_{x \to 0} \left( 4 \right)} }}\\ &= \frac{{\sqrt {{{\left[ {\mathop {\lim x}\limits_{x \to 0} } \right]}^2}\mathop { + \lim }\limits_{x \to 0} \left( 4 \right)} }}{{\sqrt {\mathop {\lim }\limits_{x \to 0} \left( x \right) + \mathop {\lim }\limits_{x \to 0} \left( 4 \right)} }}\\ &= \frac{{\sqrt {{0^2} + 4} }}{{\sqrt {0 + 4} }}\\ &= \frac{{\sqrt 4 }}{{\sqrt 4 }}\\ &= \frac{2}{2}\\ &= 1 \end{array}$So, $\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{{x^2} + 4}}{{x + 4}}} = 1$.
Euler's Number
Eulerian number $e=2.718281828459...$ is an irrational number obtained from a limit form for the variable $x$ approaching infinity. The number $e$ is formulated as:
\[\begin{array}{l} \boxed{\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{x}} \right)^x} = e}\\ or\\ \boxed{\mathop {\lim }\limits_{x \to \infty } {\left( {1 - \frac{1}{x}} \right)^{ - x}} = e} \end{array}\]Example
Calculate the limit value of the following function.
- $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x}$
- $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{{{x^2}}}} \right)^{{x^2 } - 4x}}$
Answer
-
$\begin{array}{l}
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x} = \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^{\frac{x}{3}.3}}\\
= \mathop {\lim }\limits_{x \to \infty } {\left\{ {{{\left( {1 + \frac{3}{x}} \right)}^{\frac{x} {3}}}} \right\}^3}\\
= \mathop {\lim }\limits_{x \to \infty } {\left\{ {{{\left( {1 + \frac{1}{{\frac{x}{3}}}} \right )}^{\frac{x}{3}}}} \right\}^3}\\
= {e^3}
\end{array}$
So, $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{3}{x}} \right)^x} = {e^3}$ .
So $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{1}{{{x^2}}}} \right)^{{x ^2} - 4x}} = e$.
Casinos near Casinos Near Casinos in Washington State
ReplyDeleteA map showing casinos 파주 출장샵 and other gaming facilities located near Casinos in Washington 속초 출장안마 State. 대구광역 출장안마 Search for Casinos 수원 출장샵 near me in Washington. List of all Casinos 인천광역 출장안마 Near